In this short step-by-step guide, you will learn how to build a simple regex to match leading zeroes in text and how to use it in a real financial data example with yfinance.
Detecting leading zeroes is useful when you need to:
- Validate numeric input
- Clean financial datasets
- Filter invalid values
- Ensure numbers are non-zero
- Process stock volume or price data
We will cover:
- Regex pattern explanation
- Python example
- Practical yfinance use case
- Full working example at the end
Step 1 — Understand the Regex Pattern for Leading Zeroes
To match a number that starts with zero, use:
^0+
Explanation
^→ Start of string0+→ One or more zeroes
If you want to match only standalone zero values:
^0+$
If you want to match zero followed by space or word boundary (similar to the StackOverflow example):
^0\b
Step 2 — Simple Python Example
Let’s test this in Python:
import re
samples = [
"3400",
"0 fd",
"df 0 f",
"0.0",
"df0",
"-0-"
]
pattern = re.compile(r"^0\b")
for text in samples:
if pattern.search(text):
print(f"Matched: {text}")
Output
Matched: 0 fd
Matched: 0.0
This detects strings that start with zero.
Step 3 — Match Pure Zero Values Only
If you want to verify that a value is exactly zero:
pattern = re.compile(r"^0+$")
values = ["0", "00", "000", "10", "01"]
for value in values:
if pattern.match(value):
print(f"Pure zero value: {value}")
Step 4 — Real Practical Example Using yfinance
Now let’s use this in a real financial use case.
Imagine you download stock data and want to:
- Detect rows where Volume starts with zero
- Filter invalid or corrupted financial values
- Validate imported CSV stock data
Example — Detect Zero Volume Days
import yfinance as yf
import re
ticker = yf.Ticker("AAPL")
df = ticker.history(period="1mo")
pattern = re.compile(r"^0+$")
df["Volume_str"] = df["Volume"].astype(str)
zero_volume_rows = df[df["Volume_str"].str.match(pattern)]
print(zero_volume_rows)
Why this is useful?
- Detect missing trading data
- Clean financial dashboards
- Validate stock market datasets
- Filter bad imports
Step 5 — Remove Leading Zeroes from Financial Data
If you imported numbers as strings and want to clean them:
df["Clean_Volume"] = df["Volume_str"].str.replace(r"^0+", "", regex=True)
This removes leading zeroes safely.
Full Working Example — Regex + yfinance
import yfinance as yf
import re
import pandas as pd
# Download stock data
ticker = yf.Ticker("AAPL")
df = ticker.history(period="1mo")
# Convert Volume to string
df["Volume_str"] = df["Volume"].astype(str)
# Regex pattern for pure zero values
zero_pattern = re.compile(r"^0+$")
# Find zero-volume days
zero_volume = df[df["Volume_str"].str.match(zero_pattern)]
print("Zero volume rows:")
print(zero_volume)
# Remove leading zeroes example
df["Clean_Volume"] = df["Volume_str"].str.replace(r"^0+", "", regex=True)
print("\nCleaned Volume Column:")
print(df[["Volume_str", "Clean_Volume"]].head())
When Should You Use This Regex?
Use leading zero regex when:
- Validating numeric form input
- Cleaning financial datasets
- Checking non-zero values
- Preprocessing stock or trading data
- Cleaning scraped price data
Summary
To match leading zeroes in Python:
^0+
To match only pure zero values:
^0+$
To detect zero at start of string:
^0\b
Combining regex with yfinance makes it easy to clean and validate real stock market data in Python.